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THE EFFECT OF WALL INTERFERENCE UPON THE AERODYNAMIC CHARACTERISTICS OF AN
AIRFOIL SPANNING A CLOSED-THROAT CIRCULAR WIND TUNNEL
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SUMMARY

The results of a theoretical and experimental investigation of
wall inferference for an airfoil spanning a closed-throat circular
wind tunnel are presented. Analytical equations are derived
which relate the characteristics of an airfoil in the tunnel at
subsonic speeds with the characieristics in free air. The
analysis takes into consideration the effect of fluid compressi-
bility and is based upon the assumption that the chord of the
airfoil is small as compared with the diameter of the tunnel.
The development is restricted to an untwisted, constani-chord
airfoil spanning the middle of the tunnel. Brief theoretical
consideration 18 also given to the problem of choking at high
speeds. Resulis gre then presented of tesis to determine the low-
speed characteristics of an NACA 4412 airfoil for two chord-
diameter ratios. While, on the basis of these experiments, no
appratsal 18 possible of the accuracy of the corrections at high
speeds, the data indicate that at low Mach numbers the analytical
results are valid, even for relatively large values of the chord-
diameter ratio.

INTRODUCTION

The design. of modern high-performance airplanes requires,
insofar as possible, an accurate knowledge of airfoil profile
data at Reynolds and Mach numbers attained in flight.
Since the size and power of wind tunnuels are subject to vari-
ous practical limitations, most existing tunnels, even if they
can provide the desired Mach number, are not capable of
attaining full-scale Reynolds numbers for all flight conditions.
To minimize this shortcoming in tunnel tests of airfoil
profiles, it is therefore necessary to use models having as
large a chord as possible relative to the cross-sectional
dimensions of the tunnel test section. In order fo eliminate
the effects of supportiog struts and to exclude the indetermi-
nate tunnel-boundary interference involved in the testing
of large-chord airfoils of limited span, it has become common
practice in such tests to use airfoils which completely span
the test section. Hven for these so-called ‘‘through”
models, however, the tunnel-boundary interference can still
be considerable, and accurate correction must be made for
its effects if the tunnel data are to be used with confidence
in the calculation of free-flight airplane characteristics.

The tunnel-boundary interference for sairfoils spanning
wind tunnels of various types has been the subject of numer-
ous theoretical and experimental investigations. The inter-
ference for rectangular tunnels having rigid walls normal to
the span of the airfoil and either rigid walls or free boundaries

parallel to the span has been discussed theoretically by sev-
eral writers. For example, Lock (reference 1), Glauert (ref-
erence 2), and Goldstein (reference 3), give the necessary

tunnel-wall corrections for an airfoil spanning e rectengular

tunnel in an incompressible fluid ; while Goldstein and Young
(reference 4) show how these corrections, as well as those for

any general case of interference in an incompressible fluid,

cen be modified to take account of fluid compressibility.

Reference 5 gives the corrections for the compressible case
in & closed-throat rectangular tunnel, as well as a critical

discussion of the results of the previous references and some

experimental data from low-speed tests. Fage (reference 6)

also presents experimental drag data for several symmetrical

bodies of various sizes in a closed-throat rectangular tunnel.

Experimental and theoretical results for an sirfoil spanning

a completely open-throat rectangular tunnel are given by

Stiiper (references 7 ard 8). The case of an airfoil spanning
an open-throat circular tunnel has been the subject of a
number of investigations, including theoretical treatments
by Glauert (reference 9), Stiiper (references 7 and 8), end
Squire (reference 10), and experimental measurements by
Stiiper (references 7 and 8) and Adamson (reference 11).
Apparently, the case of the closed-throat circular tunnel has
received no attention.

Since this last case is often encountered in practice, an in-
vestigation was made of the tunnel-wall interference at sub-
sonic speeds for a wing spanning & closed-throat circular
tunnel. The present paper presents the results of this in-
vestigation. In the first part of the paper, analytical equa-

tions are derived relating the characteristics of the airfoil .

in the tunnel with those in free air for & compressible fluid.
Some consideration is also given to the phenomenon of chok-~
ing which occurs at high speeds. In the second part, the
validity of the theoretical results is examined by the analysis
of experimental data for an NACA 4412 airfoil for two ratios
of airfoil chord to tunnel diameter. The investigation is
restricted to uatwisted constant-chord airfoils spanning the
middle of the tunnel.
THEORY

As in reference 5, the theoretical development of the
tunnel-wall corrections is divided coaveniently into two gen~
eral sections. First, the influence of the wall upon the field
of flow at the airfoil in the tunnel is determined. Second,
the aserodynamic characteristics of the airfoil in this field of

flow are related to the corresponding quantities in free air.
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In this manner, simple formulas are finally obtained which
enable the prediction of the free-air characterlstlcs when the
characteristics in the tunnel are known.

Again, as in reference 5, the analysis is based upon the
method of superposition. To this end, it is assumed that the
airfoil is of samall thickness and camber, so that the induced
velocity is everywhere small as compared with the velocity
of the undisturbed stream. With this assumption, the total
induced velocity at any poiut is the simple vector sum of the
separate velocities induced at that point by the interference
between the tunnel wall and the airfoil camber, thickness,
and wake. Thus the effects of camber, thickness, and wake
may each be analyzed separately and superposed to obtain
the desired result for the complete airfoil. As pointed out
in reference 5, this procedure is permissible even in the com-
pressible fluid if the airfoil is of small thickness and camber
as assumed. _ o

Before proceeding to the actual development of the theory,
it is useful to contrast the present problem with the problems
of through airfoils in the various types of rectangular tunnels
and in the open-throat circulsr tunnel. In the case of an
airfoil spanning & rectangular tunnel having rigid walls
normal to the span of the airfoil, the problem is relatively
simple. If the effect of the boundary layer along the tunnel
walls is neglected, the flow is sensibly the same in all planes
normal to the span; that is, there is clearly no spanwise
variation in lift. The air flow is thus essentially two-dimen-
sional, and the interference problems of camber, thickness,
and wake can be analyzed by the customary means of a
system of images with axes parallel to the span of the airfoil
(references 1, 2, 3, and 5). This is true whether the tunnel
boundaries parallel to the span are fixed or free. 1ln this
manner, tunnel-boundary cotrvections can be derived for
airfoils of moderately large chord as compared with the
height of the tunnel test section.

In the case of an airfoil spanning a completely free jet,
whether rectangular or circular in section, the lift necessarily
falls to zero at the boundary of the jet. There thus exists
in this case a pronounced spanwise variation in lift and an
attendant system of trailing vortices. .In the existing treat-
ments of the problem, only the interference between these
trailing vortices and the jet boundaries is considered, the
interference effects associated with the chordwise distribu-
tion of bound vortices and with the airfoil thickness and
wake being completely neglected. This procedure implies
the assumption that the chord of the airfoil is very small
relative to the dimensions ot the jet. In this manner, the
problem is reduced to a limiting case of the usual problem
of an airfoil partially spanning the jet, and, as in this latter
case, the component of downwash induced at the airfoil by
the interference between the walls and the trailing vortices
is one-half as great as the corresponding component an
infinite distance downstream. The theoretical determina-
tion of the wall interference may thus be treated as a prob-
lem of two-dimensionsal flow in a plane normal to the axis of
the tunnel infinitely far behind the airfoil. The boundary
conditions for either the rectangular or circular jet are then
readily satisfied by the introduction of & suitable system of
image vortices with axes parallel to the axis of the tunnel
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(references 7, 8, 9, and 10). This method of analysis, how-
ever, is inadequate if the chord of the airfoil is even moder-
ately large as compared with the dimensions of the jet.

The case of the airfoil spanning a closed-throat circular
tunnel is more complex than either of the foregoing problems.
Unlike the condition prevailing in the free jet, the lift in
this case need not fall to zero at the boundary—that is, at
the tunnel wall—so that the spanwise variation in lift is
not necessarily large. In fact, as will be seen, the lift is
constant across the span of the airfoil, and no system of
trailing vortices exists. The assumption of a very small
chord and the consequent reduction of the problem to a case
of two-dimensional flow in a plane infinitely far downstream
is thus without meaning. On the other hand,an analysis
for airfoils of moderately large chord in the manner em-
ployed in the case of the rectangular tunnel with rigid side
walls is not possible. In the closed-throat cireular tunnel
the flow in all planes normal to the span of the airfoil is not
the same, so that the effect of the bound vortices, and of the
airfoil thickness and wake as well, cannot be treated as a
problem in two-dimensional flow., Furthermore, the bound-
ary conditions at the tunnel wall cannot be satisfied for the
actual three-dimensional problem by any known system
of images. The solution of the problem for the closed-throat
circular tunnel thus requires an analysis entirely different
from those employed in the previous instances.

INFLUENCE OF TUNNEL WALL UPON FIELD OF FLOW AT AIRFOIL

An approach to the problem of the airfoil spanning a
closed-throat circular tunnel is afforded by the work of von
Kérmén and Burgers in reference 12 (pp. 266 to 273), where
the velocity potential at an arbitrary point in the tunnel is’
determined for a U-shape vortex of infinitesimal span in an
incompressible Auid.

\

z
F10URE 1.—Elementary U-shaped vortex In closed-throat clrculur tunnel.
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A system of rectangular coordinates z, y, z is introduced
as shown in figure 1. The z-axis is taken on the center line
of the tunnel with its positive direction downstream. The
z-aXis is positive downward, and the y-axis positive to the
left for ap observer looking against the direction of flow.
An alternative system of cylindrical coordinates z, w, 8 is
defined by the relations

Y=uw cos 8
; ®

2=e sin 4

The positive direction of circulation is defined so that a
vortex with positive circulation exerts a force on the fluid in
the direction of the positive z-axis. In other words, the lift
force experienced by a positive vortex is in the negative z
direction. The velocity of the fluid in the undisturbed
stream is denoted by V” and the radius of the tunnel by .
Other symbols are defined as introduced in the text. A list
of the more important symbols and their definitions is given
in Appendix C.

Consider now a U-shape vortex of infinitisimal span dy
parallel to the y-axis and situated in the yz-plane at the point
n=wg €08 by, { =wy sin 6, If the strength of the vortex is
denoted by I’ the velocity potential in the elosed tunnel at
the points z, «, 6 is given by von Kfrmén and Burgers, for
negative values of z, as

__Tdy (=20
=% )y % @)
where
9=% i’ i} cos m(f—fy)e 22 J, m(;\;;ﬂ)Ju(R.wo)
nm) gml 1——)\,Tr2) )‘asz()\'T)
92—
(Erf ) ©

(It should be noted that the quantity £ appearing in these
equations is merely a variable of integration and has no physi-
cal significance.) The quantity Jz(\w) is a Bessel function
of the first kind of the order m. The summation with respect
to m extends over all the positive integers and includes
m=0; the prime added to the summation sign indicates that
a factor % must be inserted before the term corresponding to
m=0. The summation with respect to s for every m
extends over all positive roots of the equation

I’ () =0 (4)

where J;’(\;r) is the derivative of the function J,(A\s) with
respect to its argument. The notation used throughout this
paper for the Bessel functions is that of Watson (reference
13), which is the same as that of the Smithsonian tables
(reference 14).

By differentiating @ with respect to { and then integrating
with respect to £, as indicated in equation (2), the velocity
potential becomes finally
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P'd x / o -X'xJu )‘.
¢=—T—1‘? mE-:‘c')’ s=1 sz o) X
(1 _)\,Tr’ R}sz(}\,r)

I:m cos 6, sin m(8—8,) ‘ﬁ‘%%’—)ﬂ-
A, sin 6, cos m(8—8,) J,,.’()\.wu)_:l (5

As pointed out, this expression applies only at negative values
of 2. As will be seen later, the necessary results for positive
values of # can be derived from considerations of symmetry.

By means of equation (5), it is possible to evaluate the
wall interference associated with both airfoil camber and
thickness for the case of the incompressible fluid. These
results can then be modified for the effect of fluid com-
pressibility by the methods of reference 4. If is found
finally that, for ¢ closed-throat circular tunnel, the effects of
interference between the walls and the airfoil camber are
identical with the corresponding interference effects for the
same airfoil spanning a closed-throat rectangular tunnel, the
height of which bears a known relation to the diameter of
the circular tunnel. A similar coneclusion is obtained regard-
ing the effects of intetference between the walls and the air-
foil thickness, except for a numerical difference in the
relation between the diameter of the given ecircular tunnel
and the height of the equivalent rectangular tunnel. The
interference effects associated with the wake of the airfoil
are not analyzed in detail, but their magnitude can be
estimated with reasonable accuracy by comparison with the
results for the thickness effect. In order to simplify the
complex mathematics of the problem, the interference effects
are calculated only for the section of the airfoil at the center
line of the tunnel. As will be seen later, however, experi-
mental data indicate that the results are applicable at any
spanwise station.

Camber effect.—To analyze the effect of the interference
between the tunnel walls and the airfoil camber, the thickness

and wake of the airfoil are considered to be removed and the

airfoil reduced to its mean camber line. The resulting infini-
tesimally thin airfoil may then be replaced by a sheet of
continuously distributed, bound vortices which, in the general
three-dimensional case, consist of both spanwise and chord-
wise vortices. The velocity induced at any given point on
the camber line is then obtained by integration over the entire
vortex sheet. As in all thin-airfoil theory the distribution
of bound vorticity must be such that the resultant of this
induced velocity and the free-stream velocity is tangential
to the camber line at all points. As will be seen, however,
the actual theoretical determination of the distribution of
vorticity is not necessary in this case.

In calculating the velocity field of the vortex system, it is

assumed that the bound vorticity is distributed in the middle

plane of the tunnel—that is, in the zy-plane—rather than
elong the camber line and that the induced velocity at any
point on the camber line is the same as the induced velocity
at the corresponding point in the xy-plane. From equation
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(5), the velocity potential at any point z, «, ¢ for a vortex
element on the y-axis at the point y=1 (6y=0, wo="1) is

_Tdy & & msinmf e"-"J,,.O\.w)J,,.(X.n)
Lo s
T omeiesl 11(1— 73 ) NS
Rg $ m &
The term for m=0 disappears by virtue of the factor m in

the numerator of the general term. The vertical induced
velocity »,/ in the incompressible fluid is then

(8)

,_26_2620 , 06 B
% =500 oz 0w 0z
F . . dw 06 1
or points in the zy-plane (6=0, w=y), b_z=0 and % 7
Thus, at points in the zy-plane,
Tdy &, & m2er S (NI (N
‘IJ,'=——#-’§=1 % 7752 ) ( 1) - D .
¢ Y (1_m2) M’Jm’(laf')

The complicated double series in this equation can be
reduced to a single series and the mathematics of the problem
greatly simplified by limiting the discussion to the chord-
wise section of the airfoil at the center line of the tunnel

(y=0, 2=0). From the known relations for Bessel functions
{cf. reference 13}, for y=0
Jx(hsy)
2
Ay o

J—“,\(:;/"y) =0 form>1

Thus, at points on the z-axis,

T'dn &
2‘11'7’z a=]

ek'le()\l"l)
7 (1—53m) MI2O)

where the summation with respect to s extends over all the
positive roots of the equation

Ji'(\r)=0 (9

From Bessel’s differential equation

(8)

v =—

Jron==(1-ga) s . a0

where the double prime denotes the second derivative of the
Bessel function with respect to its argument. Equation (8)
can thus be written

, Ddp & e, (M)
e 2wy Nywon A ows BN

Uy

As mentioned, this equation is velid only for negative values
of z.

It is apparent that the series in equation (11) is rapidly
convergent for large negative values of z, but that the con-
vergence is slow for small negative values. Since in the
evaluation of the velocity induced by the vortex sheet it

is the small values of z which are of primary importance,
equation (11) cannot be applied directly in the present case.
1t is possible, however, by means of a method demonstirated
by Watson (reference 15), to express the series of this equa-
tion as & combination of elementary functions and a series
of ascending powers of z and ». The resulting series is
readily applicable to the present problem.

The detailed procedure for the transformation of the series
of equation (11) is given in Appendix A. By application
of the final result, equation (11) may be written.

I'dp & i) Tvdg[_ it +

s =D 3 v (VR A ] I TR e
e —1 24142941
kgo ,20 k'(7<(?+ 13 l?z;;iﬁlr)gﬂﬂrmﬂﬂx:l (12)

The double summation extends over all integral values of &
and p from zero fo positive infinity. The numerical cocffi-
cient #'se+r41y=4"ss is given by the integral

1 t”"(l—]—tz)
—“<2f+1>wﬁ Ter & (13)

Here I,(f) is a modified Bessel function of the first kind of
order unity, and I;’(f) denotes the derivative of I,(f) with
respect .to its argument. The numerical values of p's, for

e
M 2=

f=1, 2, 8, 4, are evaluated by means of a series expansion

in Appendix A.

It is readily shown that the first term on the right-hand
gide of aquation (12) agrees with the induced velocity com-
puted for =0 by the more elementary theory of tunnel-wall
interference which considers only the effects of the trailing
vortices and their images. To this end, consider the two-
dimensional flow in a plane normal to the axis of the tunnel
an infinite distance downstream (fig. 2). The theory states
that the induced velocity at a given point (¥, 2) in this planeis
twiceasgreatas the induced velocity at the corresponding point
in the plane z=0 (cf. reference 12, p. 260). In the plane
z= o, the trailing vortices of the U-shape vortex previously
considered constitute a vortex peair having an infinitesimal
spacing dn and situated at the point y=9, z=0. The circu-
lation of each vortex of the pair is I'" and is directed as shown

]
4

Freure 2.—8ection through tunnel at infinity downstream.,
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in figure 2. The boundary condition that there shall be no
flow normal to the wall of the tunnel can be satisfied by the
introduction gt the point 2=0, y=r?/y of an image vortex
peir with a spacing 7°dn/s* and with the circulation of the
vortices directed as indicated. The vertical velocity induced
at the tunnel center by the trailing vortex pair is

_Tdy

o (=) =58

and the vertical velocity induced at the same point by the

image vortex pair is
r’a’n

o
The total vertical velocity at the center of the tunnel at
2= o is then the sum of these {wo velocities; thaf is,

_Ddy(r*+2*)
2%y

I'dy
2xr®

9,;(:0):—

7 (=)= 14
The vertical velocity at the center of the tunnel at 2=0 is
one-half of this value, or

I’ dn(r*+ %)

4xrin? (15)

2/ (0)=—
This value agrees with the result of equation (12) for the
special case x=0. Thus, the first term on the right-hand
side of equation (12) represents the vertical induced velocity
on the center line of the tunnel at =0 and is attributable
entirely to the trailing vortices and to the interference
between these vortices and the tunnel walls. The remaining
terms represent the variation in induced velocity due to a
displacement a distance # upstream from the origin. These
terms arise both from a change in the effect of the trailing
vortices and their wall interference and from the now-active
effect of the transverse bound vortex and its interference
with the tunnel walls.

Although equation (12) was deduced for negative values
of z, it can be shown that it is applicable to positive values
of z as well. According to von Kérmén and Burgers (ref-
erence 12, p. 267), the vertical induced velocity at —z is
related to the corresponding velocity at +2 by the equation

v’ (—2)=2,"(=) -,/ (+2)
By virtue of this relation, together with the fact that

0./(0) =—;- 2/ (), it follows that

v’ (+2)—v/(0)=—[v.' (—2)—2'(0)] (16)
That is, the difference between the induced velocity at a
given station z and the induced velocity at z=0 must be
an odd function of . The terms containing z in equation
(12), which were derived to represent this difference for
negative values of the variable, are seen to constitute pre-
cisely such a function. Thus the expansion of equation (12}
is valid for positive as well as negative values of z.
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FIGURE 3.—Infinitesimally thin airfoil spanning elesed-throst circular tunnel.

The vortex sheet which represents the entire airfoil can

now be built up by the superposition of U-shape vortices in

the zy-plane, and the total induced velocity found by inte-
gration of equation (12) over the entire system. The leading
edge of the airfoil is placed on the y-axis as shown in figure 3;

the trailing edge then lies at 2=¢, where ¢ is the chord of the
airfoil. The circulation of an elementary vortex having an
finitesimal span dn and situated at the point z=§, y=11is
taken to be (dTV/dt)dg, where (dTV/dE) is the vorticity per

unit length of the chordwise section at the station y=7.
The vertical velocity induced at the chordwise station z on

the center line of the tunnel by a single elementary vortex is
given by equation (12) if z and I’ are replaced by (z—§)
and (dIV/dE)df, respectively. The total vertical velocity

induced by the complete airfoil is then given by the double

integral
T(x‘— E) A

4""'f f‘” dr’)[_""l‘ﬂ P+ @—8

= (—=1)20 3rypiry ™ (— E) 2211
AP oy 52}?1)125*?“*’*“] dn df

an

The integration of equation (17) requires a knowledge of
(dIV/dE) as a function of n and £ Theoretically, (dI'/df)
could be determined from the requirement that the induced
vertical velocity at every point on the camber line must

'be such that the resultant of this velocity and the free-

stream velocity is tangential to the camber line. This
method of procedure leads, however, to a complicated double
integral equation, the solutlon of which does not appear
feasible. Some assumption concerning the distribution of

solved.

vorticity must therefore be made if the problem is to be
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To aid in the choice of a suitable assumption, experiments
were carried out to determine the pressure distribution, both
chordwise and spanwise, over an airfoil spanning a closed-
throat circular tunnel. The airfoil used in the experiments,
which are described in detail later .in the report, had an
NACA 4412 section and was untwisted and of constant chord.
The results of these experiemnts reveal that for such an
arrangement the lift is sensibly uniform across the span for
angles of attack below the stall. This fact is illustrated in
figures 6 and 7, which show the experimental spanwise
lift distribution for the airfoil at various angles of attack in
wind tunnels affording chord-diameter ratios of 0.357 and
0.625. These results were at first regarded as rather sur-
prising. Later, however, it was realized that they are only
what might logically be expected from general considerations
of the conditions of flow in a closed-throat tunnel. A
demonstration of this fact is given in Appendix B, in which
it is shown that the lift distribution is uniform across an
untwisted, constant-chord airfoil spanning any closed-throat
wind tunnel, irrespective of the cross-sectional shape of the
tunnel. Detailed examination of the pressure distributions
from which the results of figures 6 and 7 were obtained
reveal further that at a given angle of attack the chordwise

pressure distribution is sensibly the same for all spanwise |

stations on the airfoil; that is, the lift per unit chord at any
given chordwise station is constant across the span. It is
to be expected that this result, though obtained for a par-
ticular airfoil, will be equally true for any ordinary camber-
line shape. Thus it is reasonable to assume that the dis-

J‘+f _rdqt - rle—§) d lzm
- o]
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tribution of bound vorticity is not a function of the spanwise
position on the airfoil; that is. (dI'’/d%) is independent of 7.
On. the basis of this assumption, equation (17) may be
written
s [ () [ [ et
d’ _ )

s =l

(—=1)%u'aespent (ﬂ?—f)zﬁl]
;‘; ,,Z_‘s HEA-D1 @ D)ToFA e | dn df (18)
and the integration carried out with respect to n. The first

two terms of the integrand, however, become infinite at the
point n=0. These singularities, whlch are due to the effects
of the vortices trailing from the vortex elements on the
z-axis, require that special care be taken in the integration.

- The evaluation of the integral must be carried out from —r

to —e and from 4 ¢ to 4, and to the resulting function
must be added the effects of the trailing vortex pairs of span
2¢ which straddle the z-axis. The limit of this sum must
then be taken as e tends to zero. The vertical velocity
induced at the point # on the z-axis by the vortices trailing
from a vortex element of span 2¢ symmetrically placed at

r=§, y=01is
2(z—§)

o L(A\[2
U =t df)l:e e/ (x—g)! .*E)’:|d'(s

Since the_ first two terms of equation (I18) contain only
second-order powers of 7, the integrals from —r to — ¢ and
from +e to +r will be equal. The integral of these two
terms with respect to 4 thus becomes finally

2f+’[ 7"-!-77

r(z—E) r(z—§)
n”w/n’-l-(x—é)’] dnt2 l: +e\e A (x—§) }

Zﬁn{VPQHEZfPJ}

2 «—0 (Z_E) T r

The integration with respect to n of the double series in
equation (18) presents no difficulty. The expression for
v, thus becomes after integration

y an | D _E)
% 41rrf< ) (33—5)

(=D ?w'asp4n

© z— N\
5 S mereniene ()

¢ (19)

For constant spanwise circulation, the trailing vortices
finally disappear in the integration with respect to 5. The
integrand of equation (19) thus represents the increment of
vertical velocity induced by an elementary vortex of constant
circulation completely spanning the tunnel.

It will now be assumed that the chord of the airfoil is
small enough as compared with the dimensions of the wind
tunnel that powers of (z—£)/r greater than the first may be
neglected in the integrand of equation (19). This is equiva-

@—DVer@—8%

—¢

()

lent to assuming that powers of the chord-diameter ratio
(¢/d) higher than the second may be neglected in the final
equations for the tununel-wall corrections. The approxi-
mation is accomplished by expanding the first term of the
integrand in ascending powers of (z—£)/r and discarding all
terms coutaining powers higher than the first and by retain-
ing only the p=0 terms of the double series. This gives for
the induced velocity

r

v, =

z—¢ = u
)| 1+ 2 merdistom o

which may be written

w=; J, (T et 2t

M 3k41)

k-ok1<k+1>x<2k+1)2"]}df
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By substituting the numerical values for the coefficients-
waeen from equations (A20) of Appendix A, this equation
may be written to an accuracy of three significant figures as

=t [ (B[22 o]

The foregoing result, which was derived by assuming the
fluid to be incompressible, can be modified for the effect of
compressibility by the methods of Goldstein and Young.
The modification is most readily performed by means of the
so-called “Method II” (reference 4, pp. 5-6), which compares
the compressible and incompressible flows for equal values of
circulation. If the Mach number of the compressible flow
at the position of the airfoil is denoted by Af, it is readily
shown on the basis of this method that for a given distribu-
tion of vorticity the vertical velocity induced in a compres-
gible fluid at any point on the center line of a tunnel of radius
ris YI—2Af* times the corresponding velocity at the same
point in an incompressible fluid in a tunnel of radius
r1—M?% Thus, from equation (20), the vertical velocity
v,” In a compressible fluid in the actual tunnel of radius r is

\/1_—_}.'1_’ f (dI"

(20)

0.579
x——f r(1—M?) @—

o|d @

The first term of this equation represents the vertical velocity
that would be induced by a vortex sheet of infinite span in an
unlimited fluid field. The second term thus represents the
interference effect of the tunnel wall

Equation (21) may be compared with the corresponding
result from reference 5, which discusses the wall interference
for an airfoil in a closed-throat two-dimensionsal-flow wind
tunnel. After alteration to conform with the notation and
sign conventions of the present paper, equation (41) of refer-
ence 5 gives for the vertical velocity at the camber line of an
infinitesimally thin airfoil mounted on the center line of a
two-dimensional-flow tunnel of height A

e N | oy Prages)

Comparison of equations (21} and (22) shows that an infini-
tesimally thin airfoil spanning & closed-throat circular tunnel
of radius r experiences at its midspan section the same inter-
ference as would be experienced by the same airfoil in a closed-
throat two-dimensional-fiow tunnel of height

L3
_—— = 1 . Y
= TaosTey 080

or, in terms of the tunnel diameter d,

hy=0.843d (23)

This result makes the later determination of the interference
corrections for the circular tunnel very simple, since the cor-
rections for the rectangular tunnel are already known.

It is readily shown by means of equation (8) that the vortex
system which represents the infinitesimally thin airfoil in-
duces no axial velocity at any point in the xy-plane. It
follows that airfoil camber has no effect upon the axial ve-
locity or pressure gradient at the position of the model.
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Thickness effect—The interference effects associated with
airfoil thickness can be found by reducing the given airfoil

to its base profile and analyzing the interference between the

tunnel wall and this profile. The base profile is defined as
the profile the airfoil would have if the camber were removed
and the resulting airfoil placed at zero angle of attack. Ifit
is assumed that no wake is present, the interference between
the tunnel wall and this symmetricel airfoil can be found by
applying the results of equation (5) to Lock’s method of
analysis of the interference on 2 symmetrical body in two-
dimensional incompressible flow. (Lock’s original analysis
appears in reference 1; an alternative explanation of the
method is given by Glauert in reference 2, pp. 52-57.)
Lock’s method of analysis, which assumes that the chord
of the airfoil is small as compared with the dimensions of the
tunnel, consists essentially in replacing the given symmetrical
airfoil by an equivalent two-dimensionsal source-sink doublet
and calculating the interference between this doublet and
the tunnel boundaries. The strength of the doublet in any
given case is proportioned so that it induces at a considerable
distance from itself in free air a velocity equal to the velocity
induced at the same point by the original airfoil. In the
two-dimensional case, the interference flow at the position
of the airfoil is then readily found by introducing an infinite
series of images of the doublet such as to satisfy the condition
that there shall be no flow normal to the tunnel boundaries
and calculating the velocity induced at the airfoil by this
system of images.
rectangular tunnel at mid-height, the net result of the wall
interference for the incompressible case is to increase the
effective axial velocity at the position of the airfoil by the
amount :

A] "'{71 hz

where p is the strength of the doublet used to represent the
airfoil. It is shown in references 4 and 5 that the effect of
fiuid compressibility is to increase this interference velocity
by the factor 1/[1— (AL")**/2, where A{’ is the Mach number
of the undisturbed stream in the tunnel. Thus, in the com-
pressible case,

AV =g (24)

(JM’I):}S/;
The problem of the symmetrical airfoil in & closed-throat
circular tunnel can also be solved by replacing the airfoil by
an equivalent doublet spanning the tunnel. In this case,
though, the interference for the doublet cannot be found by
the method of images. If the doublet used is composed,
however, of two vortices in a plane normal to the steam in-
stead of the customary source and sink in line with the
stream, the interference velocity can be calculated by means
of equation (5). Since the velocity fields of the two types
of doublets are identical, the interference calculated by means
of the vortex doublet is the same as that which would be
obtained if the source-sink doublet were used. -
Consider a vortex element of circulation I and span dy
at the point wg, 8, in the yz-plane (fig. 1). From equation (5),
the streamwise velocity #,” induced at any point z, w, § up-

For an airfoil spanning a closed-throat
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stream from the origin by this element and its accompanying
trailing vortices is .

dp SV & A ()
— oy N
‘H'T'z M ya] (1_%) R,;sz(kgr)

[m cos 6, sin m(6—8y) Jﬂ%‘ﬁ+

X

-

A, 8in 6, o8 m(6—8;) J,,.’()\,wo)] (25)

At a point in the middle plene of the tunnel (zy-plane},
=0, o=y, and the velocity is
r"d 9. 12 eXﬁJm A' [
’ 712 ( y)

Ve =——3 5 X
i~ Fl(l—){%ﬁ) N m2ONT)

l:—m cos 6 sin m#é, 'l”%o'w—")+7\, sin 6, cos mby Jy’ (k.wo)]
(26)

As before, the double series in this equation reduces to &
single series if the discussion is limited to the interference at
the center Ime of the tunnel. For points on the center line,

Jo Ay)=Jo(0)=1
and the streamwise induced velocity becomes

P’dﬂ =, ¢M® gin 000]0, (}\.Cdo)

vx’=-—21rrz‘=1 Jos(kgr) : (27)
From the known relations for the Bessel functions
J. o' (7\@0) =—J, 1(7\#’0) (28)
so that equation (27) may be written
,___I"d‘ﬂ 2 gh? Sin 00(]1 O\two) - . (29)

U TorrE T JR0NT)

As required by equation (4), the summation with respect to
¢ in this equation extends over all positive roots of the
equation
J'A\)=—J1(A)=0 30)
As the next step, consider a pair of symmetrically placed
elementary vortices composed of & vortex of circulation —I*
at the point wy, & and & vortex of circulation 4TI at the
point w, 6. From equation (29), the streamwise velocity
induced at & point on the center line of the tunnel by this
vortex pair and the accompanying trailing vortices is

i TVdn &\ e sin oy (N yes)

Uy =—"3 23 JoZNT) - (81)
which may also be written
,___21"(00 sin &y d‘l} = e""J;(Xﬂo) .
Vs = 21!’7'2(00 =1 Jg’O\,T) (32)

The expression (21w, sin 8,) which appears in this equation
is the product of the vortex strength and the distance between
the vortices. ) '

Now let the distance between the vortices tend to zero
while the vortex strength increases in such a way that the
product (2I'w, sin 6,) retains & constant value u. The
result in the limit is an elementary vortex doublet of strength
¢ and span dy at the point wy=y on the y-axis. The
streamwise velocity induced on the center line of the tunnel
by this elementary spanwise doublet and the accompanying
trailing vortex doublets is then

oot B0 5 ATy (i)
® 211‘7‘217 =1 Jo’(k.?")

(33)

As before, the infinite series in this equation is rapidly
convergent for large negative values of z, but the convergence
is slow for small negative values and is nonexistent when
z=0. Once again, however, the serics can be cxpressed as
8 combination of elementary functions and a power scries
which is readily applied to the problem at hand. The
details of the transformation are given in Appendix A.
By means of the final result; equation (33) can be written

@[ I (=1 gepinn™2?
s 2rr’[2<n*+x'>m 25 28 FIGE T 1) (zp) 2 Fireerss ]
' (34)

where the double summation extends over all integral values
of k and p from zero to infinity. The coefficient pagy 4=
pay 18 given by the integral

1 © i
MG Dx Jo 7O 9
The numerical values of this integral for f=1I, 2, 3, 4 are

eveluated in Appendix A.

The induced velocity for a doublet spanning the tunnel is
now readily found by taking the doublet strength u constant
across the span and integrating equation (84) with respect
to g from ~—r to -+». This gives finally

[ ,.s (_l)p[.tz Z’p
v ==zt [xwrﬂ+zz 23 2 FeT 11 @p) [0k + TV 257
- (36)

In the integration across the tunnel, all the trailing vortices,
of course, disappear.

It is apparent from the symmetry of the problem, that the
streamwise velocity induced by a doublet spanning the tun-
nel must be an even function of the variable . Equation
(38), which was derived for negative values of z, is seen to be
such a function and is thus applicable to positive values of
the variable as well.

The values of »,;” for vanishingly small values of z, that is,
at the position of the doublet, is then found from equation
(36) by expanding the first term in ascending powers of z/r
and discarding all terms containing second powers and
higher and by retaining only the p=0 terms of the double
series. This gives

o el

[ K rz_l_ = M
] Qk!(kﬂ)’f@:ﬂ)zu] (37)
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After substitution of the numerical values for the coefficients
Raesny from equations (A33) of Appendix A, this equation
becomes to an accuracy of three significant figures

. ,__L+1.356y
T 20 2n?

The first term of equation (38) is the velocity induced by a
doublet of infinite span in a field of unlimited extent. The
remaining term therefore represents the effect of interference
between the doublet and the tunnel wall. Thus the net
result of the interference between the airfoil thickness and
the tunne] wall for the incompressible fluid is to inerease the
effective stream velocity at the position of the airfoil by the
amount

(38)

,_1.356u

MV'="gmm

In any particular cese, x4 is again equal to the strength of the
doublet used to represent the given airfoil.

The result of equation (39) can be modified for the effect
of fluid compressibility by the method of reference 4. In
this case, the modification is most conveniently performed
by means of Method I (reference 4, pp. 3-5) which compeares
the compressible and incompressible flows for a given airfoil
of unsaltered shape and size. By this method, it is readily
shown that the streamwise velocity induced in the incom-
pressible fluid at any point on the center line of & tunnel of
radius r is 1/1/ 1—(AL7)? times the corresponding velocity at
the same point in an incompressible fluid in & tunnel of radius
r\:‘ 1—(3£")%. Here A{’ is, as before, the Mach number in the
undisturbed stream. The inerement in axial velocity in the
compressible case is thus

(39)

AIV'=2ﬂ2[11 E5(6;},)2]m (40)

Comparison of equations (24) and (40) shows that, if no
wake is present, a symmetrical airfoil spanning a closed-
throat circular tunnel of radius » experiences at its midspan
section the same increase in axial velocity as would be ex-
perienced by the same airfoil in a closed-throat two-dimen-
sional-flow tunnel of height

he=—t—— r—1.558"
+3(1.356)

or, in terms of the tunnel diameter,

ha=0.779d (41)

The foregoing result greatly simplifies the determination of
the true stream conditions at the position of the airfoil in the
circular tunnel, since the necessary equations for the rec-
tangular tunnel are already known.

Consideration of the symmetry of the system formed by a
base profile spanning the middle of a circular tunnel indicates
that the intereference between the wall and the airfoil thick-
ness does not influence the vertical induced velocity »,’ at
any point on the airfoil. Similarly, the airfoil thickness has
no effect upon the streamwise pressure gradient in the tunnel
at the position of the airfoil.
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Wake effect,—It is shown in general terms in reference 5
that the interference between the wake of & body and the
walls of & closed-throat wind tunnel gives rise at the position
of the body to & velocity increment and a streamwise pres-
sure gradient which are not present in free air. This is true
for any type of body and any shape of tunnel test section.
The magnitude of this velocity increment and pressure
gradient in the case of an airfoil spanning & closed-throat
rectangular tunnel can be determined approximately by
replacing the wake by the flow from a suitable fluid source
and the tunpel walls by an infinite system of image sources.
In the case of the airfoil spanniog a closed-throat circular
tunpel, this treatment is no longer possible, since no system
of image sources is known which will satisfy the boundary
conditions at the tunnel wall. A more complex method of

- apalysis could conceivably be devised for this case; however,

since the calculation is highly approximate even in the case
of two-dimepsional flow, such an analysis does pot appear
warranted. For present purposes it is probably sufficient to

assume that the midspanp section of the airfoil in the circular _

tunnel experiences the same velocity inerement and pressure

gradient as a result of the wake interference as does the same

airfoil in a rectangular tunnel of a height defined by equa-
tiop (41). This assumptiop leads to the simplest expression
for the final correction to the measured drag coefficient and
should give results which are reasonably accurate. If it is
assumed that the center of the walke lies in a horizontal plane
containing the diameter of the tuonel, it follows from con-
siderations of symmetry that the wake interference does not
contribute to the vertical induced velocity v, at the sirfoil,

It has already been indicated that the interference as-
sociated with the camber of the airfoil has no effect upon the
stream velocity at the model. The total increase in velocity
for the complete airfoil in the circular tunnel is thus given by
the sum of the increments caused by the thickness and the
wake of the airfoil. In reference 5 it is shown that for the
anglagous case of the airfoil in the rectangular tunnel, the
true velocity V at the position of the airfoil may finally be
written

) 1 140.4RL7° .
V=V {1+ g=grym At =y o} 42)

where ¢ and 7 are factors dependent upon the size of the air-
foil relative to the tunnel, A is a factor dependent upon the
shape of the base profile, and ¢, is the drag coefficient of the
airfoil as measured in thé tunnel. The first correction term
in this equation represents the velocity increment caused by
the airfoil thickness and is found by substituting the proper
value for the equivalent doublet strength in equation (24).
The second correction term represents the velocity increment
associated with the wake of the airfoil.
The factors ¢ and 7 in equation (42) are defined by

_r <£)’
=i \k

i)

and

(44)

(43)
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where (c/h) is the ratio of the airfoil chord to the tunnel
height. An analytic expression for A is given in equation (3)
of reference 5. Values of A for & number of base profiles are
given in table I, which is reproduced from this reference.

If it is assumed that the height of the equivalent rectan-
gular tunnel with regard to the wake interference is the same
as that given by equa.tlon (41) for the thickness interference,
the true velocity in the circular tunnel is found simply by
substituting A, from equation (41) for % in the factors ¢ and =
of equation (42). The true velocity at the midspan section
of an airfoil spanning a circular tunnel is thus

= V{14 iy Aot L2 e} (48)

where the factors 7. and e are defined by

72=0.321 (&)
o3=0.339 (%)’

A correction to the stream velocity implies corrections also
to the stream dynamic pressure, Reynolds number and
Mach number. These. corrections for an airfoil spanning a
rectangular tunnel have heen determined in reference 5 on
the basis of the assumption that-the flow .is adiabatic
The corresponding corrections for the cu‘cula,r tunnel can
be found by replacing the factors r and ¢ in equations (29),
(32), and (33) of reference 5. by the factors =z and o, of the
present paper. The true dynamic pressure_ g, Reynolds
numcber R, and Mach number A at the midspan section in
the circular tunnel are thus related to the corresponding
quantities in the undisturbed stream-(denoted by primes) by
the equations L -

{ —(M')? 2— (M’)’] [1+0.4(M")] }

(46)
and
(47

=y At —(1y

(48)

ALAmOTOOR L 1 0TALYILA0400)),
B=g 3”_212"‘”[ QYT —Qry el |
(49)

, i1+0.2(1\4”)2 , [1+0. 2(111’)2] f14-0. 4(.211’)2]
M=NM {IT[I_(Ml)iF_'A — (MR }
<50>

Numerical velues of the funections of A’ which appear in
these equations are given in table II, which is reproduced
from reference 5.

At low Mach numbers, the terms containing m¢,/ in the
equations for the corrected stream characteristics are usually
negligible as compared with the terms containing Ags. At
high Mach numbers, however, where the drag coefficient is
very large, the terms with r.¢s’ predominate.

RELATIONS BETWEEN AIRFOIL CHARACTERISTICS IN TUNNEL
AND IN FREE AIR

The characteristics of the airfoil in free air are now readily

determined in terms of the characteristics at the midspan
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section in the tunnel. It is simply necessary to apply the
results of the preceding sections to the relations already
derived in reference 5 for the airfoil spanning a rectangular
tunnel. .

Briefly, the method of reference 5 relates the section char-
scteristics in the tunnel at an undisturbed stream velocity
V' to the characteristics in ap unconfined stream having a
velocity equal to the true velocity V which exists at the
position of the airfoil in the tunnel. The relation is ob-
tained on the basis of equal values of the so-called cotangent,
component of lift in the tunnel and in free air, this being
necessary to assure that the essential character of the pres-
sure distribution over the airfoil is the same in both cases.
By this procedure corrections are derived which may be ap-
plied to simulteneously measured lift, moment, and drag co-
efficients and angle of attack in the tunpel to obtain the cor-
responding quantities ip free air. These corrections appear
as functions of the factors A and o, of the product r¢,/, and
of the Mach number M’ of the undisturbed stream. The
correction to the angle of attack, which arises out of the
interference effects associated with camber, is proportional
to ¢ and independent of A and 7es’. The correction equa-
tions for the lift end moment coeflicients contain correspond-
ing terms proportional to o elone, together with terms which
depend upon the thickness and the wake effects and are pro-
portional to the products Ac and r¢,/. The correction to the
drag coefficient appears as two terms, proportional to Ac
and rc/, respectively. The term proportional to Aes is in
this. case composed basically of two parts, one due to the
thickness effect and one due to the wake eflect.

The correction equations for the airfoil spanning a circular
tunnel can be derived directly by modifying the equations of
reference 5 in accordance with the results of the preceding
sections. Since the terms containing o exclusive of A
appear as a result of the camber effect, the tunnel height A
in such terms must be replaced by 0.843d as required by
equation (23). In the terms which depend upon the thick-
ness and wake effects and are distinguished by the products
Ac and 7¢4’, the quantity % is replaced by 0.779d in accord-
ance with equation (41). This invelves the assumption
already mentioned that the height of the equivalent rec-
tangular tunnel with regard to the wake effect is the same
as that calculated for the thickness effect.

As in reference 5, the free-air lift, quarter-chord-moment,
and drag coefficients referred to the true dynamic pressure ¢
are denoted by the conventional symbols. The correspond-
ing quantities measured in the tunnel and referred to the
apparent dynamic pressure ¢’ are denoted by the same
symbols with primes added. The final equations for the
corrected aerodynamic coefficients are then

ev=el { L~y [12—_(3]}{%“ Ao
- QIAULOAMN ol o
Cme = Cmm’{ 1 —%ﬁ Aos—
B=GLPILEOSON] o o (52
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Corf 3062
o=\ 1= =(arrypn A

2=l +0.4(LY]
ALES | (53)

and the corresponding angle of attack in degrees is

=o' .__5@&_ ’ ’
axa=uo +2T-\!1TM)_2 {C; -|-4c,,,¢,‘ } (54)

where the factor ¢; is given by

0,=0.289 (é)’ (55)

and the factors = and o are as already defined in equations
(46) and (47). Numerical values of the compressibility
factors which appear in these equations are given in table I1.
The corrected quantities correspond to the true Reynolds
number and true Mach number as given by equations (49)
and (50). '

From 2 rigorous standpoint, the foregoing corrections
apply only to data obtained from chordwise pressure dis-
tributions at the midspan section of the airfoil. Actually,
as has already been pointed out in the discussion of camber
effect, the experimental chordwise pressure distribution at
any given angle of attack is sensibly constant across the span.
The corrections should therefore be applicable with sufficient
accuracy to data obtained from pressure distributions at any
spanwise station.

Reference 6 also includes a method for correcting experi-
mental chordwise pressure distributions to free-air condi-
tions in the case of an airfoil spanning a rectangular tunnel.
The same procedure may be applied to pressure distributions
over an airfoil spanning a circular tunnel if the factor r
is replaced by 7; and the factor & by o; wherever it appears
alone and by ¢ where it appears in the product Ag.

CHOKING AT HIGH SPEEDS

As explained in reference 5, for tests of a model in any
closed-throat wind tunnel, there is some value of the Mach
number AL’ of the undisturbed stream which cannot be
exceeded irrespective of the power input to the tunnel.
This follows from the fact that at high speeds the combina-
tion of model and wind tunnel acts essentially as a converg-
ing-diverging nozzle, and the flow in the tunnel exhibits the
characteristics of the flow in such a nozzle. Thus, at some
Mach number less than unity in the undisturbed stream,
sonic velocity is attained at all points across a section of the
tunnel, usually in the vicinity of the model. When this
occurs, increased power input to the tunnel serves merely
to extend the region of supersonic flow downstream of this
sonie section and has no effect upon the velocity of the stream
ahead of the model. The tunnel is then said to be “choked”,
and the Mach number 3 of the undisturbed flow ahead of
the airfoil has its maximum attainable value. This value is
described as the apparent choking Mach number, the word
*“apparent’’ being used to differentiate this value from the
corresponding free-air Mach number A which would be
computed from equation (50).

§42051—850——17
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If it is assumed that the section of sonic velocity is coin-
cident with the section of minimum area between the model
and the tunnel walls, the apparent choking Mach number
can be obtained from elementary considerations of uni-
dimensional adisbatic flow, as shown in reference 5. For
the present case of a constant-chord airfoil spanning a cir-
cular funnel, the apparent choking Mach number AL’ if
finally defined for air (y=1.4) by the relation

AII:A

261 [+ =1

(56)

where £, is the “effective’ thickness of the airfoil and d is, as
before, the diameter of the tunnel. A graph of this relation
is given in figure 4. As a matter of interest, the resulfs are
shown for the supersonic as well as the suhsonic flow regime.
The region above the curve represents an impossible state
of flow.

In estimating the apparent choking Mach number in any
practical case it is necessary to replace the effective thickness
t. by the projected thickness ¢, of the airfoil normal to the
direction of flow. As indicated in reference 5, this procedure
leads, in the case of the subsonie wind tunmel, to an over-
estimation of M’y, because it neglects the possible con-
traction of a portion of the stream aft of the airfoil as well
as the effect of the airfoil boundary layer.
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The importance of the boundary layer and the accom-
panying drag with regard to tunnel choking is pointed out
in reference 5, where the apparent choking Mach number is
calculated for a flat plate at zero angle of attack in a two-
dimensional-flow wind tunnel. Since the projected thickness
for the plate is zero, the unidimensional theory would indicate
that no choking occurs. Actually, because of the fact that
the plate experiences drag, choking does take place. Similer
considerations hold, of course, for a flat plate spanning a
circular tunnel. In this case the apparent choking Mach
number for air (y=1.4) is given by the equation

1(d) 1+1. 4(M'en){ _‘/1 1—151224'“)’ 2]} (57)

— 280 Ten)?
A graph of this relation is given in figure 5. The effect of
drag on choking for supersonic as well as subsonic wind
tunnels is shown. It can be demonstrated that the pomts
on the curve correspond to a Mach number of unity in the
flow far downstream of the model where the wake has spread
completely to the tunnel wall. Points above the curve
represent impossible conditions of flow. In most cases
encountered in subsonic tunnels, the apparent choking
Mach number determined by the thickness of the airfoil end
defined by equation (56) is usually the lower. For very thin
airfoils at small angles of attack, however, the value of A*,,
given by equation (57) can have the lower value. At present
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no way is known to combine the thickness and drag effects
in a single celculation as should logically be done.

It should be noted, as pointed out in detail in reference 5,
that the flow in a tunnel at choking does not correspond to
any flow in free air. Furthermore, for a range of Mach
numbers just below choking, where the flow is influenced to
any extent by the restrictions which finally promote choking,
any wall-interference correction is of doubtful accuracy.
This is particularly true if the model is at an appreciable
angle of attack so that sonic velocity is attained across ithe
stream on one side of the airfoil before it is on the other.

EXPERIMENT

The experimental investigation was initiafed for two rea-
sons: (1) to determine the spanwise distribution of lift over
an airfoil spanning & closed-throat circular tunnel, and (2)
to examine the validity of the theoretical interference cor-
rections derived in the preceding analysis. As has been pro-
viously mentioned, the development of the theoretical rela-
tions requires a knowledge of the variation in lift over the
span of the airfoil. Since no theoretical or experimental
evidence_regarding this matter was available, the spanwise
variation in lift was investigated experimentally for an
NACA 4412 airfoil for two ratios of airfoil chord to tunnel
diameter. The results of these tests are also directly appli-
cable to the examination of the validity of the theoretical
correction equations.

The experimental work was performed in a low-turbulence,
nonreturn-type wind tunnel with interchangeable throat sec-
tions of 14~ and 8-inch diameter. The two chord-diameter
ratios were obtained by testing the same airfoil in each throat
section. Since the airspeed was held constent throughout
the tests, this arrangement permitted the Reynolds number
and the Mach number to be duplicated simultaneously for
the two chord-diameter ratios. In this manner the effccts
of any variation in these parameters were eliminated from
the tests.

The NACA 4412 airfoil was used because a model of suit-
able size was already available ideally equipped for pressure-
distribution tests. The model, which is deseribed in refer-
ence 16, was of 5-inch chord and 30-inch span. This chord,
together with the two throat diameters, gave chord-diameter
ratios of 0.357 and 0.625. Ibp the tests, the airfoil extended
through the walls of the tunnel and was clamped in tight-
fitting support blocks which prevented any leakage of air al
the walls. The 54 pressure orifices located around the sur-
face of the midspan section of the model were connected to
a multiple-tube manometer for measurement of the pressure
distribution over the airfoil. To secure as accurate pressure-
distribution data as possible, alcohol was used as the manom-
eter fluid and the liquid heights were recorded photographi-
cally.

Pressure-distribution records were secured at cach of cight
angles of attack from —4° to 15° at a Reynolds number of
epproximately 450,000 and a Mach number of approximately
0.2 with the model mounted in both the 14-inch and the 8-
inch diameter throats. The spanwise distribution of Iift was
determined for each angle of attack by sliding the pressure

orifices laterally from one wall to the other and recording the
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indicated pressure distributions at a number of spanwise
stations. The chordwise pressure distributions were plotted
and mechanically integrated to obtain lift and quarter-chord
moment coefficients. No drag coefficients were obtained
because the experimental installation did not permit balance
measurements to be made and wake surveys were not feasible.

By testing the airfoil in both erect and inverted attitudes
the inclination of the air stream with respect to the tunnel
axis was determined for each throat section. The stream
angle was found to be +0.45° for the 14-inch throat and 0°
for the 8-inch throat. Corrections have been applied to afl
angles of attack for the measured angularity.

The spanwise distribution of lift coefficient uncorrected for
tunnel-wall interference is shown for the two chord-diameter
ratios in figures 6 and 7 in which lift coefficients at various
angles of attack are plotted as a function of the spanwise
location of the measurement plane.

. Curves of lift coefficient against angle of attack for the two
chord-diameter ratios are shown uncorrected for tunnel-wall
interference in figure 8 (2). The results given pertain to the
section of the airfoil at the center line of the tunnel. The
corresponding curves corrected for wall interference by
means of equations (51) and (54) are shown in figure 8 (b).
In epplying the corrections, the term containing r¢,’ was
necessarily omitted as no measurements of drag were made.
For the values of ¢; to be expected in such tests, however,
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this term would be negligible in comparison with the remain-
ing terms so that this omission does not affect the final results.
For purposes of comparison, section lift characteristics as
obtained by Pinkerton from tests of a finite-span rectangular
airfoil in the Langley variable-density wind tunnel (reference
17) are also shown. These data correspond to an effective
Reynolds number of 450,000 and are thus directly comparable
to the results of the present test.

In figure 9 (a) curves of quarter-chord moment coefficient
against lift coefficient are shown uncorrected for tunnel-wall
interference for both chord-diameter ratios. The same data
are plotted in figure 9 (b) after correction for wall interference
by means of equations (51) and (52). Also shown for com-
parison are the corresponding data from reference 17.

DISCUSSION

An examination of figures 6 and 7 reveals the previously
mentioned fact that there is no appreciable variation in lift
over the spanp of the airfoil at all angles of attack up to those
closely approaching the stalling angle. This observation
holds for both chord-diameter ratios. In the vicinity of the
stall & spanwise variation in lift appears which becomes pro-
gressively more erratic as the angle of attack is increased.
As might be expected, this variation becomes apparent at a
lower angle in the case of the larger chord-diameter ratio.
The results of figures 6 and 7 corroborate the conclusion of

20 4«40 B0 80 100
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Appendix B for the particular case of the airfoil spanning &
circular tunnel.

From figure 8 (b), it is seen that the corrected lift curves
for the two chord-diameter ratios agree almost exactly with
one another except at angles mear the stall. Below the
vicinity of the stall the corrected data coincide with the
results of reference 17 except for a constant angular displace-
ment of approximately 0.2°. In reference 16, Pmkerton
estimates that his values for the angles of attack may be
too large by a constant error of approximately 0.25° because
of & possible error in the assumed direction of the stream.
It is thought that the angles of attack of the present experi-
ments are accurate to within 40.1°. These limits of
accuracy are sufficient to account completely for the apparent
angular displacement.

In the region of the stall, the corrected lift curves for the
two chord-diameter ratios do pot mutually coincide, but
the data for the chord-diameter ratio of 0.357 agree with
Pinkerton’s results within 2 percent. As previously men-
tioned, Pinkerton’s tests were made with a finite-span
rectangular airfoil, for which the cross-span variation in
lift is necessarily large. It is not to be expected that the
determination. of maximum section . lift from such tests
would be as accurate as from tests of a through model, {or
which the cross-span lift variation is small.

It is seen from figure 9(b) that the corrected moment
curves agree satisfactorily with each other and with the re-
sults of reference 17.

In summary, for angles of attack below those in the region
of maximum lift, the results presented in figures 8 and 9
demonstrate the validity of the theoretical lift, moment, and
angle-of-attack corrections for low Mach numbers and chord-
diameter ratios up to at least 0.625. For angles in the vicin-
ity of maximum lif, the corrections are not strictly applica-
ble up to such a large chord-diameter ratio. The results of
the present test indicate that an accurate determination of
maximum lift can be made with a chord-diameter ratio at
least as high as 0.35. An evaluation of the accuracy of the
correction equations at high Mach numbers is not possible
on the basis of the experimental evidence available at present.
It is to be expected, however, that the maximum permissible
chord-diameter ratios will decrease as the Mach number in-
creases.

The data of the present paper enable no definite conclusions
to be drawn regarding the validity of the drag correction.
However, in view of the accuracy of the other corrections for
the circular tunnel and in view of the fact that the corre-
sponding drag correction for & two-dimensional tunnel is
known to be accurate, it is to be expected that this correction
will give a satisfactory evaluation of the wall interference
upon the measured drag.

The equations of the present paper should not be expected
to give accurate results when applied to tests in which air
leakage occurs at the tunnel walls. In such tests the lift at
the walls drops markedly, so that the assumption that the
lift is uniform across the span is no longer valid. The
importance of avoiding such leakage, if reliable airfoil
characteristics are to be obtained, is pointed out in reference
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5 with regard to tests in two-dimensional tunmmels. The
same general considerations apply in the case of an airfoil
spanning a circular tunnel.

CONCLUSIONS

Airfoil data obtained from tests at subsonic speeds of an
airfoil spanning the center of a closed-throat circular wind
tunnel can be corrected to free-air conditions by means of
the following equations:

1+o 4(M')? }

—() T20¢ (45)
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where 7z, a1, 04 ¢, are given by .
72=0.321 ((%) (46)
51=0.289 (72)2 (55)
03=0.339 (%)2 47

and A is a dimensionless factor the value of which depends
upon the shape of the base profile of the airfoil. (See table
I and equation (3) of reference 5.) The remaining symbols
are defined in Appendix C. Numerical values of the func-
tions of A’ which appear in these equations are given in
table II. Experimental pressure distributions can also be
corrected by proper modification of the method of reference 5
as indicated in the text.

Tests of an NACA 4412 eirfoil at low speed for two ratios
of airfoil chord to tunnel diameter demonstrate the validity
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of the foregoing equations at low Mach numbers. At angles
of attack below the region of maximum lift, the equations are
applicable for chord-diameter ratios up to at least 0.625, the
meximum ratio tested. In the region of maximum lift a
chord-diameter ratio of 0.35 is known.to be permissible, and
still higher ratios may give satisfactory results. An examin-
ation of the validity of the equations at high Mach numbers
is not possible at present, but the maximum permissible
chord-diameter ratios may be expected to decrease as the
Mach pumber increases.

The tests also indicate that at low Mach numbers the span-
wise lift distribution on an airfoil spanping a closed-throat
circular tunpel is essentially constant except at angles of
attack ip the immediate vicinity of the stall. This result
corroborates the general conclusion of Appendix B, ip which

REPORT NO. 8490—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

it is demonstrated that the lift is uniform across an untwisted,
constant-chord airfoil spanning any closed-throat wind tun-
nel, irrespective of the cross-sectional shape of the tunnel.

The correction equations cannot be expected to apply at
or in the immediate vicinity of the choking Mach pumber,
which is the maximum Mach pumber attainable with a given
combination of airfoil and tunnel test section. The choking
Mach number cen be estimated by means of equations given
in the report.

AMEs AERONAUTICAL LABORATORY,
NarioNaL Apvisory COMMITTEE FOR AERONAUTICS,
MorrerT FiLp, Cavir.



APPENDIX A

TRANSFORMATION OF SERIES OF BESSEL FUNCTIONS

The series involving Bessel functions which appear in the
discussions of the interference effects associated with airfoil
camber and thickness are, as pointed out in the text, poorly
suited for use at small values of the variable 2. It will be
shownp here, by means of 2 method demonstrated by Watson
(veference 15), that the series may each be expressed as a
combination of elementary functions and a convergent power
series. The resulting series are well adapted for use in the
present problem. The notation used for the Bessel functions
is that of Watson (reference 13) and of the Smithsonian
Tables (reference 14).

Series for camber effect.—The discussion of the interfer-
ence effects associated with dirfoil camber involves the series

- = e ], 1 O\a"l)
W= 70 I O (A1)

convergent for negative values of z. The summation with
respect to & extends over all the positive roots of the equation

Jll(X,T) ={ (AZ)
Letting j,=A,s and x=—az, the series may be written
. Jy(Jan/7) —I it
W= Ejl 17 17 (3e) e (43)

where the summation is taken over all the positive roots of the
equation

) Y (5)=0 (44)
Ma—N¢n, , consider the function
TJl () Y1 (wnfr)—Jy (wn/r) ¥y’ (w) e—BIT (A5)

Jl (?D)

where the quantity ¥; is a Bessel function of the second kind
of order unity. This function has a simple pole at each of
the points w= %7, and is one-valued and ansalytic at all other
points in the complex w-plane. Its residue at the point j,
can be shown to be

Ji (.7:7]/ 1‘)

JJJI (]:)Jl (.7:

which is identical with the general term of the series (A3).
By tbe theorem of residues, the integral of the function (A5)
taken counterclockwise around a contour inclosing the por-
tion of the complex plane to the right of the imaginary axis
is then equal to 2x¢W7;. The integral along a large semi-
circle on the right of the imaginary axis tends to zero when
the radius of the semicircle tends to infinity through values
such that the semicircle avoids the poles of the integrand.
It is thus necessary to retain only the integral aslong the
imaginary axis. The contour must, however, have an in-

g~ Juxir

dentation to the right of the origin, since the integrand has
& pole there with residue (#*f#*}/ry. If the radius of the
indentation is made to approach zero, ¥, may finally be
written

r’—l—n _

f ( ) J' (W)Y, (’w‘ﬂ/r) Ji(wn/r) Yy (w) e—¥<lrdnp
2 Ji' (w)
(A6)
From the known relations for the modified Bessel functions,
it is readily shown that
Ji(F 1) =£iL1(7)

Fi(it)=— L O£ 1K)

. (A7)
J'(d)=1L'()

Y (it)= il (0+2 K ()

where I; and K, are modified Bessel functions of the first
and second kind of order unity. By writing the integral
in equation (AB6) in two parts, one along the positive and
one along the negative imaginary axis, and replacing w in
these integrals by i and —#, respectlvely, T then
becomes

Wim—ShEg L [ ORI LGOI G gy (g a
L'
or
"= _1"2-:; +}_ f K, (ty/r) sin (tx/r) dt—

The value of the first integral in this equation is given by
Watson in reference 15 as

f I{;(t‘))/r) sin (t:c/r) dt—'—/T—_F;—’

The second integral can be evaluated by expanding the
product I, (tn/r} sin (/r} in ascending powers of ¢ and inte-
grating term by term. The series expansion for the prod-
uct is

(A9)

)v t2(k+n+n 2k-41  2p+1

Li(tn/r) sin (&/r) EZ Al (k-[—l)! p+ 1)1 2zx+1 PEE D

E=0 p=0

and the term-by-term integration gives
= K .
7’—((:1 I,(t/7) sin (/) dt

= (—=1)? B2gpsny 7> K271
B Zf“p-o B CEF 1T (2p+ 1)1 2%F 2GF9+0
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(A10)
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The coefficient u'acxypr1y=p"2, is given by

’ _____];_ wK!.’(t)
#ﬂ—ﬂ_ 0 Ill(t)

& dt

which may be written after integration by parts

s 1 =2 (L)
R0 D I’ OF

This integral is a constant for any given value of f.
Reverting to the original variable z, the expansion for W,
may finally be written

(A11)

.u,=_r2+n3_ rT .
=2 o TR
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QE’H B+ D)1 (2p+ 1)1 2B 2®IpED

This agrees with the result given without derivation by
Tani and Teaima (reference 18).
For purposes of computation the coefficient u’;, is written

(Al2)

.u.'zf= - ﬁ)‘ 8271+ B"2/) (A13)
where
®  g2f
13,2!=',:".ﬁ [ i: g‘;] 2 (A14)

The quantity 8’5, can then be expressed in & form suitable
for computation by means of a method devised by Watson
for an analagous integral (reference 15).
As the first step, the function
el
[£,(9)]* cos (wt/b)

(A15)

is written as a sum of partial fractions, b being a positive
constent which will be fixed later. This can be accomplished
by considering the integral
J‘ widw
(w—t) [’ (w)]" cos (xw/b) ~

around the circle |wj=R in the complex plane.
grand of the integral (A16) has poles at the points

= (n41/2)b

where j, is & positive zero of J,'(w); and s=1, 2, 3, ...,
n=0,1,2,3,... The residue at the simple pole at w=t¢
is the function (A15). The residues at the simple poles at
w=+(n+1/2)b are

( l)n(n_l_ 1/2)2f pertl
 w@bFORF U b+ 2

(A16)

The inte-

w=t, w= 417,

The poles at w= -7, are second order poles; the residues
there are
(=1)f548 i
TGN A7 “Godh (%7,/5) [(j.:!:it)’—

2f — (7,/b) tanh (i7,/b) +3 —Js :I
73:|: 2t

Now, the integral (A16) taken around the circle |w|=
tends to zero when R tends to infinity in such a meanner
that the circle never passes through a pole of the integrand.
It follows from the theorem of residues that the sum of the
remdues of the mtegrand at. all its poles is zero; thus

Tl w ( l)n (n+ 1/2)2f+l herts

TT7 00 cos (ifhy £ 12y — 1 U b5 i
Fark ja—t
+2(—=1)/ Z-"JLE(J )(1—;;.’)f cosh (x7,/0) l:(.?a’—l-t’)’

. . 3—j.2

2f — (xjufb) tenh (nffb)+1 =55
j82+ tz

By multiplying this equation by cos (x#/b) and integrating

from — « to + «, it can be shown with the aid of certain
integral relations given by Watson (reference 15, p. 36) that

© gt (nt1/2)2p2rH
I-. G o= s
BN
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STt
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<2f Ty —JTZ) cosh (x2,/b
The first_series in this equation converges rapidly when b is
large, the second when & is small. A reasonable corapromise
for purposes of calcuation is to take d=1. —
Equation (A19) with =1 has been used together with
equation (A13} to determine the first four values of the
coefficient u’y;, The final results are

(A17)

(A18)

(A19)

9= —0.999
’=—1.627

i (A20)

H.’g—_- —9.78

n'se=—120.8

Comparable values of ' and g’ to the same number of
significant figures are given without derivation in reference
18. The value of u’;in this latter reference agrees with that
of the present paper but p’, differs by one in the third decimal
place. The value given in (A20) has been carefully checked
for several values of the parameter & and appears to be cor-
rect. Values of u’y and p’; apparently have not previously
been computed.

Series for thickness effect.—The series which appears in
the discussion of the interference effects associated with
airfoil thickness is

ek. Jl()\t‘n)

W= e o (A21)
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convergent for negative velues of 2. The summation with
respect to 8 extends over 2ll the positive roots of the equation

Ji(ur)=0 (A22)

Letting j,=M\,r and x= —u as before, the series may be written

Ws =':Z '%?—;g? g~ JaxiT

where the summation is taken over the positive roots of

(A23)

Ji(4:)=0 (A24)
The function
x Jiw) Yi(wa/r)—Jy(wn/r) Y 1(w), .
3 BAT) we (A25)
has a simple pole at each of the points w=+7,. Its residue

at each of these points can be shown to be identical with the
general term of the series (A28). TUnlike the function in the
previous series, this function is regular at the origin. Inte-
gration around the portion of the complex plane to the right
of the imaginary axis then gives

H'=—-—1— =i Ji(w) ¥; (wn/r)—Jy (wn/r) Y1 (w)

. anp—kfT
27t ) —wi 2 J; (w) we ™ dw

(A26)

By applying the first two of equations (A7) and combining
the integrals along the two halves of the imaginary axis as
before, the series becomes

1(=E()

W’=;J; LK, (infr) cos (tx/r)dt—— o IO tI;(ty/7) cos (ix/r)dt

(A27)

The first integral can be evaluated by differentiating rela-
tion (A9) with respect to x. This operation gives

ﬁ "tK(tnlr) cos (tx/r)dt=§(n,—’f—,—j,r),, (A28)

The second integral can be evaluated as before by expand-
ing the product ¢I;(ty/r) cos(ix/r) in ascending powers of ¢

and integrating term by term. The series expansion for the
product is

—1 ) P2 (k+ﬂ+1)n2k+1x2?
tL(tn/r) cos (kkfr)= ?Fok' UFF 1)1 (2p) 2= F o

and the term-by-term integration gives
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where the coefficient uzrypy1y=upar is given by
1K) ., 1 (=8dt
mrz)y To VU I B30
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Reverting to the original variable z, the expansion for 1%
may finally be written

(—1)? poryppny 1>+ 2??
(1;2+P)5n ;}; £ FT(FF 1)1 (2p)] 2757

The integral (A30) has been investigated by Watson (re-
ference 15). Its value for any given r can be computed from

(A31)

the series
R nz.o%Jr
(—1¥ “2 Jz"’(_r],) [cos(ﬁg("f‘.l;z/b) h
(2f+1) cosi (;Ib/b) (432)

where b is an arbitrary positive constant. This equation has
been used with =1 to determine the first four values of p,.
The final results are
pa=0.797
2,~=1.200
#5=7.4.6
g =— 96.2

The first two of these values agree to the three decimal places
with the two numerical values computed by Watson. The
remaining two values have not previously been computed.

(A33)

APPENDIX B

CONSTANCY OF LIFT OYER AN AIRFOIL SPANNING A CLOSED-
THROAT TUNNEL

Consider an infinitesimally thin untwisted airfoil of con-
stant chord spanning a closed-throat wind tunnel of arbitrary

section. Such an arrangement is shown in figure 10, which

is 8 section, of the tunnel as seen from downstream. It is
assumed that the flow in the tunnel is nonviscous and that
the airfoil therefore has no drag.

Suppose for the time being that the lift varies in some
manner across the span of the airfoil. Any such variation
will be accompanied by a system of vortices trailing from the
airfoil and extending infinitely far downstream. If the usual
assumption is made that the trailing vortices are parallel to
the axis of the tunnel, the flow pattern in a plane normal to
the axis at infinity downstream must be of the nature shown

FI10URE 10.—Assumed flow pattern In plane normal to tunnel axis at inflnity downstream.
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in figure 10. The flow pattern, in general, consists of & num-
ber of separate sections within each of which the flow has a
closed, circulatory character. The line AB, which represents
the projection of the airfoil, extends across every such section,
and each of the sections contains the filaments of & portion of
the system of trailing vortices. The exact character of the
flow pattern in any particular case depends upon the span-

wise variation in lift and upon the cross-sectional shape of the.

tunnel,

Now, consider the flow around a streamline within any one
of the separate sections of the flow pattern—say the stream-
line CD in the section at the left-hand side of the tunnel in
figure 10. This streamline, like all the streamlines, inter-
sects the projection AB of the airfoil in two points, denoted
as C and D in the figure. The fact that in the presence of
the tunnel walls each streamline must intersect AB in two
points is essential to the discussion. If it is supposed for
purposes of discussion that the direction of flow is clockwise
as indicated, the vertical component of velocity at C is
upward while the corresponding component at D is down-
ward. This direction of flow corresponds to a net circulation
in the clockwise direction for all the trailing vortex filaments
enclosed within the streamline.

At the position of the airfoil the pattern of transverse
velocities induced by the trailing vortices is geometrically
gimilar to the pattern at infinity downstream, only the
magnitude of the velocities being different. Hence, at points
on the airfoil directly ahead of point C, the vertical velocity
induced by the trailing vortices is upward. At points
directly ahead of point D, the velocity is downward. Thus,
since the airfoil is untwisted, the airfoil section corresponding
to C operates at a larger effective angle of attack than does
the section corresponding to D. If the airfoil is of constant
chord as assumed, this means that the lift at section C must
be greater than the lift at section D.

As has been pointed out, however, the trailing vortmes
discharged between sections C and D must have a net circu-
lation in the clockwise direction in figure 10. This means
that the circulation of the spanwise bound vortices at sec-
tion D must be greater than at section C. Since the direc-
tion of stream flow was taken to be toward the observer, this
in turn means that the lift at section C must be less than
that at section D, which is in direct contradiction to the pre-
vious result. The original supposition that the lift varies
across the span thus leads to two mutually contradictory
conclusions and is therefore invalid. It follows that the
spanwise distribution of lift is uniform» across an untwisted,
constant-chord airfoil spanning any closed-throat wind
tunnel, irrespective of the cross-sectional shape of the
tunnel.

As mentioned at the outset, this result depends upon the
assumption that the airfoil is infinitesimally thin and has no
drag. It will not be strictly true if the increase in effective
stream velocity caused by the interference between the walls
and the airfoil thickness and wake is not uniform across
the span. The result also neglects any effect that the bound-
ary layer along the walls of the tunnel may have upon the
lift distribution. That these approximations are not serious,
at least in the case of the circular tunnel, is indicated by the
experimental results of figures 6 and 7.
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The foregoing reasoning is, of course, inapplicablo for an
airfoil which does not span the tunnel or for a finite-span
airfoil in free air. In these instances, the projection of the
airfoil does not extend across all of the sections into which
the transverse flow pattern is divided, and the streamlines
of this pattern need not intersect the projection of the airfoil
in two points. Under these conditions a type of varying lift
distribution can be found which does not lead to a logical
inconsistency.

APPENDIX C
LIST OF IMPORTANT SYMBOLS

¢ airfoil chord
d -diameter of circular tunnel
r radius of circular tunnel
h height of rectangular tunnel
he height of rectanguler tunnel equivalent to circular
tunnel with regard to camber effect
by height of rectangular tunnel equivalent to circular
tunnel with regard to thickness effect
T 1/4 <7;>; chord-height factor with regard to wake
effect in rectangular tunnel
T2 0.321 (E);chord-dlameter factor with regard to wake
effect 1n circular tunnel
o i3 ( }) ; chord-height factor with regard to camber
- and thickness effect in rectangular tunnel
o 0.289 (E) ; chord-diameter factor with regard to

camber effect in circular tunnel

2
o3 0.339 (—fz) ; chord-diameter factor with regard to
. thickness effect in circular tunnel

A factor depending upon shape of base profile (see
__equation (44) and table I)

a angle of attack

¢ section lift coefficient

Cm,,  Section quarter-chord-moment coeflicient

Cs section drag coefficient, }

14 stream velocity

q -dynamic pressure

M Mach number
R Reynolds number
z,9,2 rectangular space coordinates

r,w,0 cylindrical space coordinates (see equations (1))

T/ circulation of single line vortex in tunnel

dI’fdt circulation per unit chord length

7, . ¥y and z coordinates of elementary vortex

wo,80  radial and angular coordinates of elementary vortex

£ c¢hordwise coordinate of elementary vortex; also
variable of integration in equations (2) and (3}

¢ velocity potential

v,/ = and z components of induced velocity

AV’ incresse in axial velocity at position of airfoil in
tunnel

n doublet, strength

ty projected thickness of airfoil

t, effective thickness of airfoil
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T, We series of terms involving Bessel functions (see equa-
tions (A1) and (A21) of Appendix A)

Jn, ¥m DBessel functions of first and second kind of order m
(Watson’s notation)

In,Kn modified Bessel funetions of first and second kind of
order m (Watson’s notation)

hs variable of summation defined by the roots of the
equation Jp'(\r)=0
Je Ar; root of the equation J,’ (,)=0

baph'y, Dumerical coefficients (see equations (35) and (13))

kn,p variables of summation
t,0 variables of integration
K alternate variable defined as equal to —z

Superseripts

") when pertaining to fluid properties, denotes values
in the undisturbed stream in the tunnel; when
pertaining to airfoil characteristies, denotes values
in tunnel, coefficients being referred to dynamic
pressure ¢’; denotes first derivative of DBessel
funection with respect to its argument

denotes second derivative of Bessel function with
respect to its argument

"
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TABLE 1.—VALUES OF A FOR YARIOUS BASE PROFILES
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TABLE II.—COMPRESSIBILITY FACTORS FOR CORRECTION EQUATIONS
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